Created by free version of DocuFreezer

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Методы математической физики»

по направлению 22.03.01 «Материаловедение и технологии материалов» (бакалавриат)

1. Цели и задачи освоения дисциплины

Цели освоения дисциплины: формирование понимания сущности теории линейных и нелинейных уравнений физики как фундаментальной науки, освоение ее основных понятий и идей решения дифференциальных уравнений в частных производных, овладение методами и навыками решения дифференциальных уравнений в специальных функциях математической физики.

Задачи освоения дисциплины: Изучение студентами методов интегрирования наиболее физических задачах типов линейные и нелинейные часто встречающихся в дифференциальных уравнений, приобретение навыков интегрирования типовых дифференциальных уравнений в частных производных второго порядка, нахождения общих решений дифференциальных уравнений математической физики и знакомство с методами приближенного решения дифференциальных уравнений.

2. Место дисциплины в структуре ОПОП

Дисциплина относится к разделу Б1.Б.11. базовой части блока 1 ОПОП. Дисциплина следует за дисциплинами «Линейная алгебра», «Математический анализ», «Математический анализ функций многих переменных». Данная дисциплина является предшествующей для всех дисциплин блоков «Теоретическая физика», «Численные методы и математическое моделирование» и ряда специальных дисциплин.

3. Перечень планируемых результатов освоения дисциплины

изучения дисциплины направлен на формирование компетенций:

Код и наименование	Перечень планируемых результатов обучения по	
реализуемой	дисциплине (модулю), соотнесенных с	
компетенции	индикаторами достижения компетенций	
ОПК-3	Знать:	
готовностью	основные понятия и теоремы теории линейных и	
применять	нелинейных дифференциальных уравнений физики,	
фундаментальные	методы описания физических процессов и способы	
математические,	получения соответствующих уравнений;	
естественнонаучные и	классификацию уравнений в частных производных и	
общеинженерные	методы решения основных классических уравнений	
знания в	математической физики; уметь использовать	

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		

Ф – Аннотация расочен программы	дисциплины
профессиональной деятельности	специальные функции для решения задач, обладающих симметрией, основные методы интегрирования нелинейных дифференциальных уравнений;
	Уметь: применять основные методы интегрирования наиболее часто встречающихся в физических задачах типов дифференциальных уравнений в частных производных; классифицировать уравнений в частных производных, получать решения основных классических уравнений математической физики; использовать специальные функции для решения задач, обладающих симметрией, описывать физические процессы уравнениями;
	Владеть: Опытом решения линейных и нелинейных дифференциальных уравнений физики; Методами получения уравнений; Методами решения основных классических уравнений математической физики; Навыками использования аппарата специальных функций для решения физических задач.

4. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц.

5. Образовательные технологии

В ходе изучения дисциплины используются традиционные методы и формы обучения (лекции, практические занятия, лабораторные работы, самостоятельная работа).

При организации самостоятельной работы используются следующие образовательные технологии: самостоятельная работа, сопряженная с основными аудиторными занятиями (проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины); подготовка к контрольной работе; самостоятельная работа под контролем преподавателя в форме плановых консультаций, творческих контактов, внеаудиторная самостоятельная работа при выполнении студентом домашних заданий учебного и творческого характера.

6. Контроль успеваемости

Программой дисциплины предусмотрены виды текущего контроля: устный процесс, контрольная работа.

Промежуточная аттестация проводится в форме: экзамен.